
Boa Meets Python: A Boa Dataset of Data Science
Software in Python Language

Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan
Department of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA, USA

{sumon, mislam, hyj, hridesh}@iastate.edu

Abstract—The popularity of Python programming language
has surged in recent years due to its increasing usage in Data
Science. The availability of Python repositories in Github presents
an opportunity for mining software repository research, e.g., sug-
gesting the best practices in developing Data Science applications,
identifying bug-patterns, recommending code enhancements, etc.
To enable this research, we have created a new dataset that
includes 1,558 mature Github projects that develop Python
software for Data Science tasks. By analyzing the metadata and
code, we have included the projects in our dataset which use
a diverse set of machine learning libraries and managed by a
variety of users and organizations. The dataset is made publicly
available through Boa infrastructure both as a collection of raw
projects as well as in a processed form that could be used for
performing large scale analysis using Boa language. We also
present two initial applications to demonstrate the potential of
the dataset that could be leveraged by the community.

Index Terms—MSR, Boa, AST, machine learning, data science,
open source repositories, program analysis

I. INTRODUCTION

Machine learning tools and techniques are becoming preva-

lent in data-intensive software projects. Among various lan-

guages used for Data Science, Python has become one of

the most popular languages because of its large collection of

libraries to organize and analyze data. Mining such Python
projects would be helpful to improve language design, library

enhancements, bug detection as well as open new research di-

rections. For example, by analyzing programs from thousands

of Data Science projects, we can suggest the best library for

performing specific tasks, find recurrent bugs, improve certain

APIs, etc.

Inspired by this need, we have created a dataset from Github
Data Science repositories that are using the Python language.

We have stored the AST of parsed Python programs from each

revision along with the metadata into the dataset.

Collecting appropriate projects from Github repositories

and analyzing them has been an effective method for mining

software repository research [1]. DaCapo benchmark [2], New

Zealand Digital Library project [3], Software-artifact Infras-

tructure Repository (SIR) [4], are good examples of datasets

that contain C, C++, C# and Java projects. These datasets do

not include the project’s commit history. Also, there are some

datasets that are not open-source for the community. Another

category of datasets includes the project’s commit history.

Boa [5], GHTorrent [6] and Java Qualitas Corpus (JQC) [7]

are some examples of available curated datasets with history.

Boa and JQC both provide additional information about the

projects in the form of metadata. Boa also provides its own

domain specific language to write query on all the revisions of

Github projects. While most of the datasets have focused on

C, C++ and Java, a few datasets also contain Python projects

such as GHTorrent [6], Open Hub [8], work of Orru et. al. [9].

However, to our knowledge, no dataset is publicly available

that contains curated Data Science projects written in Python.

We created this dataset for Boa, a domain specific language

and infrastructure for MSR [5]. Boa provides a platform

for writing program analysis queries and abstracts away de-

tails of software repository mining. One can use the web

interface of Boa to write queries, select the dataset and

submit a job to Hadoop cluster. The user does not worry

about data collection, storage, and concurrency concerns that

are handled automatically by the platform. A Boa job can

be shared and others can reproduce the result. Boa has its

own types (Project, CodeRepository, and Revision), built-in

methods (getast, getsnapshot, etc.) and other quanti-

fiers (foreach, forall, exists) to write queries on the

dataset. A program is parsed and translated into a custom

representation including types such as Namespace, Declara-

tion, Method, Variable, Statement, and Expression [10]. A

Boa program is written to run a query on the dataset. The

Boa program is converted into a Hadoop [11] MapReduce

[12] program and submitted to the Hadoop cluster to run in

parallel.

The main goal for generating this dataset is to enable MSR

research on Data Science programs. For dataset generation,

using the GitHub REST APIs, first, we have filtered the

projects that use Python as the main language. Then, we

have filtered the projects that perform Data Science tasks.

For this filtering, we have applied two methods: 1) search

for Data Science related keywords in the description of the

project, 2) filter projects that use machine learning and Data
Science related libraries. To include only mature projects in

our dataset, we have also filtered projects that have at least

80 stars. By following these filtering criteria, we have ensured

that the dataset incorporates high-quality 1,558 Data Science
repositories from GitHub written in Python language. We have

577

2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)

2574-3864/19/$31.00 ©2019 IEEE
DOI 10.1109/MSR.2019.00086

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 06,2023 at 03:17:10 UTC from IEEE Xplore. Restrictions apply.

also extended the data schema used by Boa infrastructure,

originally designed for Java-like languages, to support Python
and written data conversion tools to convert raw data into the

Hadoop sequence file format used by Boa to facilitate scalable

queries.

To our knowledge, this is the first dataset that includes

Data Science projects written in Python. Machine learning

packages and APIs are changing very rapidly to introduce new

features and enhance existing ones. Python is also a very well-

maintained language that is evolving quickly. Our dataset will

help researchers to study the state-of-software-engineering-

practice followed in open source Data Science projects.

The key contributions of the paper are:

1) A large dataset for analyzing Python Data Science
projects that contains 1,558 Github open-source projects

with 4,977,680 revisions of Python files.

2) A data schema for efficiently storing this data in Hadoop

sequence file in order to make it memory efficient and

parallelly accessible.

3) Dataset is publicly available on Boa web-based infras-

tructure [5]. One can write MSR queries using the Boa
language and submit the job to Hadoop cluster for

further processing.

II. METHODOLOGY

A. Data Source

We have collected our dataset from Github. Source code in

Github is organized into repositories, branches and commits,

which allows retrieving every revision of a program. Besides

source code, Github also provides metadata about the project

such as developer information, commit date, commit log, etc.

that help to answer a larger set of research questions. We

have filtered repositories, as discussed below, to create the

dataset suitable for further research on MSR for Data Science
software.

B. Data Collection and Preprocessing

Github provides several REST APIs to search and collect

metadata and source code. An overview of the repository

selection and filtering procedure is shown in Figure 1. Using

the APIs, first we collect all the repositories having Python
as the main language and having more than one star. To

bookmark and follow new updates of a project, Github users

‘star’ a project. Following several prior works in this area, we

have also used the number of stars as the indication of matured

and popular project. For each project, we have collected the

metadata and other API URLs for the repository in the form

of a JSON file. By following this method, we have collected

JSON files for 343,607 Github projects. These projects are

original (not forked from another project), use Python as the

primary language and have more than one star.

The next step is to identify mature Data Science projects. To

filter the Data Science projects, we have followed two meth-

ods. First, we have filtered the projects having Data Science
related keywords such as machine learning, deep learning,

neural network, image processing, artificial intelligence, etc. in

Collect JSON file for all
Python repositories

- Language: Python
- Star: > 1
- Original (not forked)
- Found: 343,607

Filter repositories with data
science keywords in the

description

- keywords = {"data
 science", "machine
 learning", ...}
- Found: 303,434

Filter repositories that use
data science libraries

- Imports a package
- packages =
 {"tensorflow", "keras",
 "theano", ...}
- Found: 1,558

Select top rated projects
and remove toy/mercurial

projects

- Star: > 80
- Found: 1,965

Fig. 1. Repository selection process and criteria

the Github description of each repository. However, keyword

search with a wide list of keywords in the description has the

possibility to be imprecise. Therefore, we undertake a second

strategy. We filter the projects that use machine learning

libraries such as Tensorflow, Keras, Theano, etc. To include

high-quality projects in the dataset, we have removed projects

having less than 80 stars. Finally, we have collected JSON

files for 1,558 projects. These JSON files are the input to our

dataset generation process.

C. Data Generation

For each chosen Github repository, the data generation

starts with caching all the metadata and cloning the repository

locally. The Python parser, implemented in Java, is used

to parse the source code retrieved by JGit from the local

repository into AST data. Then, we utilized data writers

generated by the Protocol Buffers compiler to convert the

AST data into SequenceFiles. Protocol Buffer is an extensible

mechanism developed by Google for serializing structured data

fast compared to other formats like XML. The SequenceFile
stores data in a special format similar to map which stores

key-value pairs. In this case, key is the project and value is

the binary representation of Protocol Buffer message. Finally,

the generated SequenceFile is transferred to Hadoop Cluster

and is made accessible to Boa queries.

D. Mapping Python AST to Boa AST

We traverse each revision of a Python file and parse it with

the appropriate parser. While parsing, we identify the Python
version used in the program and attach a version tag with each

file. Two different parsers have been used to parse Python 2
and Python 3 files. The next step is to convert Python AST to

predefined Boa AST format. Boa AST format is defined in a

flexible way so that it can incorporate most of the AST nodes

578

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 06,2023 at 03:17:10 UTC from IEEE Xplore. Restrictions apply.

from different languages. However, Python has some different

language features such as lambda statement, with statement.

As a result, we had to add a few new AST nodes and change

few existing structure of Boa schema. For example, in Python,

a function can be defined inside a function. To achieve that, we

modified the Method node in Boa so that it can hold Methods

recursively.

E. Data Storage

The storage strategy is the same as other dataset storage

mechanism in Boa. The SequenceFile data is populated into

a distributed database called HBase tables [11]. HBase is

provided by Hadoop which is an open source implementation

of Google’s Bigtable [13]. From these tables, another data

structure MapFile is generated which generates an index file.

These generated files and HBase tables are the input to the

dataset mining queries.

III. DATA DESCRIPTION

A. Metrics

The dataset contains 1,558 repositories developed by 9,839

developers. The projects are owned by both organizations

and individual users. Some of the top rated projects are

Tensorflow Models, Keras, Scikit-learn, Pandas, Spacy, Spotify

Luigi, NVIDIA FastPhotoStyle, Theano, etc. The dataset also

contains projects that use at least 33 Data Science libraries

including Pytroch, Caffe, Keras, Tensorflow, XGBoost, NLTK,

StatsModels, etc. Table I presents the important metrics of the

dataset.

TABLE I
METRICS OF THE DATASET

Metric Count

All repositories
Owner

Organization 350
Individual user 1,208

Total 1,558
Developers 9,839
Revisions 557,311
Python files (latest snapshot) 86,321
Python files (all revisions) 4,977,680

B. Data Schema

The dataset is created under the predefined data format of

Boa. The fields in the dataset for storing metadata about the

repository are shown in Table II.

TABLE II
DOMAIN-SPECIFIC TYPES FOR STORING REPOSITORY, BASED ON [5]

Fields Attributes
Project id, name, created date, code repositories, ...
Repository url, kind, revisions
Revision id, log, committer, commit date, files
Person username, real name, email
File name, kind

For storing the parsed AST from the source code, the

dataset captures the fields listed in Table III. The top-level

node which holds a program file is named ASTRoot in Boa.

The Namespace node holds the qualitative path to the file,

Declarations and other source code. A class Declaration holds

the Python functions as Methods which in turn holds other

Statements and Expressions. The fields with kind attribute

are the union of different record structures where kind is an

enumerated type.

TABLE III
DOMAIN-SPECIFIC TYPES FOR SOURCE CODE, BASED ON [5]

Fields Attributes
ASTRoot imports, namespaces
Namespace name, modifiers, declarations
Declaration name, kind, modifiers, parents, fields, methods, ...
Type name, kind
Method name, modifiers, return type, statements, ...
Variable name, modifiers, initializer, variable type
Statement kind, condition, expression, statements, ...
Expression kind, literal, method, is postfix, ...
Modifier kind, visibility, other,

IV. USAGE

A. Boa Web-based Interface

The dataset can be accessed through Boa website [14] to

write queries and submit them to Boa cluster for execution. A

snapshot of this web-based interface is presented in Figure 2.

There are three steps to executing Boa queries on the Python
dataset. First, log on to the Boa website as a registered user.

Then navigate to user menu and choose Run Examples from

the left panel. Second, write a query under the Boa Source
Code. If researchers are not familiar with the language, the

example Boa programs can be utilized by clicking the Select
Examples. Third, select 2019 February/Python dataset in the

drop-down list under Input Dataset and run the query.

A client API is also provided to programmatically access the

Boa infrastructure. This allows researchers to write their own

program to submit a Boa query, like SQL queries embedded

in other languages, and retrieve results back for analysis.

Fig. 2. Boa web-based interface

579

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 06,2023 at 03:17:10 UTC from IEEE Xplore. Restrictions apply.

B. Boa Query and Output

The Boa program presented in Figure 2 is for counting the

most used Data Science libraries. The Boa program contains

an input project p and an output aggregator topimport
(line 2). A depth-first search (DFS) strategy is implemented

in the visit function (line 5) with an input project p and

a specified visitor. Before traversing the whole AST under

CodeRepository node, the visitor only looks at the latest

snapshot (line 8). For each file in the snapshot, the program

uses the same visit strategy (line 10) to aggregate different

libraries in Namespace nodes (lines 13-16). The top aggregator

selects the 10 highest weighted results as output.

The submitted Boa jobs can be accessed in the left panel

under Job List. The corresponding job status such as job ID,

created time, source code, compile/execution log is provided

for a specific job. If the job is finished without any compila-

tion/execution error, the result can be found under View Job
Output and can be downloaded as text file.

C. Using Dataset without the Web Interface

The dataset can be accessed outside of the Boa infrastructure

as well. Our dataset is in the format of Hadoop sequence file

that can be read or written using protocol buffer reader/writers.

If parallel processing over this dataset is desired, then one

would need to use threads or write MapReduce [15] tasks

from scratch to analyze the data as shown in [5]. Another

method to use the dataset outside of Boa infrastructure is to

get the publicly available Boa compiler and run queries on

the dataset directly after building the compiler in the target

environment. The instructions and resources of this submission

can be obtained from [16].

V. APPLICATIONS

To show the potential of the dataset, we describe the

following applications of the dataset.

A. Individual vs. Organization

Our dataset contains 1,558 repositories developed by 9,839

individuals developers. As a first application, we extracted

repository metadata from Github to get information about the

projects. This information is shown in Table I. The owners of

the projects are classified into two categories: organization and

individual user. Among all the repositories, 350 repositories

are managed by organizations such as Google, Microsoft,

IBM, DeepMind, OpenAi, etc. and 1,208 repositories are

owned by individual developers.

B. API Usage Study

Data Science projects in Python heavily use APIs from

common libraries, but previous research [17] has shown that

programmers often struggle to use API appropriately. Some

APIs are meant to be called in a specific sequence, with prede-

fined parameter types, values and guard conditions. Violating

these rules will result in a crash, performance degradation or

other unwanted output. To identify the misuse of an API, we

need to identify the good uses in the first place. Therefore, we

have collected top frequent API call sequence patterns from

the dataset. In Table IV, we have listed the top 10 frequent

method call sequences related to artificial neural network. We

manually created a list of neural network related APIs. For

each API method M from the list, we search for frequent

temporal sequence of k API calls where M is one of the k
API methods. The result in Table IV is shown for k = 8.

These sequence patterns can be leveraged to investigate the

violation of the order of these API calls.

TABLE IV
TOP 10 API SEQUENCES EXTRACTED FROM THE DATASET.

API Call Sequences Count
add, Activation, add, Dropout, add, Dense, add, Activation 115
add, Dense, add, Activation, add, Dropout, add, Dense 114
Dense, add, Activation, add, Dropout, add, Dense, add 112
Conv2d, BatchNorm2d, ReLU, Conv2d, BatchNorm2d,
ReLU, Conv2d, BatchNorm2d

103

Sequential, Conv2d, BatchNorm2d, ReLU, Conv2d, Batch-
Norm2d, ReLU, Conv2d

99

BatchNorm2d, ReLU, Conv2d, BatchNorm2d, ReLU,
Conv2d, BatchNorm2d, Lambda

82

Conv2d, BatchNorm2d, ReLU, Conv2d, BatchNorm2d,
Lambda, LambdaReduce, ReLU

82

LambdaMap, Sequential, Sequential, Conv2d, BatchNorm2d,
ReLU, Conv2d, BatchNorm2d

82

ReLU, Conv2d, BatchNorm2d, ReLU, Conv2d, Batch-
Norm2d, Lambda, LambdaReduce

82

Sequential, LambdaMap, Sequential, Sequential, Conv2d,
BatchNorm2d, ReLU, Conv2d

82

VI. LIMITATIONS

Limitations in our dataset can arise from internal and

external threats. One internal threat to our dataset could be that

the collected projects are not representative of Data Science
projects. To alleviate this threat, we have used both keyword-

based filtering and the use of machine learning libraries as

our filtering criteria. A potential external threat could be the

lack of maturity of the projects. We use star count of at least

80 as a filtering criteria to select repositories to mitigate this

threat. Another external threat could be the trustworthiness of

the Python grammar that we used to parse the programs. We

have used the official ANTLR grammar [18] to alleviate this

threat.

VII. SUMMARY

Analyzing open source code repositories is a widely used

method in software engineering and programming language re-

search. As of this writing, no open source dataset for studying

Data Science software is available. We created a dataset from

Github projects that are using Python, a popular programming

language for Data Science. The dataset contains 1,558 high-

quality projects with 557,311 revisions. The projects in the

dataset are mature, owned by a diverse set of users and

organizations, and use a large set of machine learning libraries.

The dataset has been developed for the Boa infrastructure and

also available outside of the infrastructure. Finally, we have

shown possible research directions to utilize the dataset.

580

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 06,2023 at 03:17:10 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Proceedings of the 10th
Working Conference on Mining Software Repositories. IEEE Press,
2013, pp. 207–216.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer
et al., “The DaCapo benchmarks: Java benchmarking development and
analysis,” in ACM Sigplan Notices, vol. 41, no. 10. ACM, 2006, pp.
169–190.

[3] I. H. Witten, S. J. Cunningham, and M. D. Apperley, “The new zealand
digital library project,” D-Lib magazine, vol. 2, no. 11, 1996.

[4] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[5] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 422–431.

[6] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a fire-
hose,” in Mining software repositories (MSR), 2012 9th ieee working
conference on. IEEE, 2012, pp. 12–21.

[7] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The Qualitas corpus: A curated collection of Java code
for empirical studies,” in Software Engineering Conference (APSEC),
2010 17th Asia Pacific. IEEE, 2010, pp. 336–345.

[8] G. Farah, J. S. Tejada, and D. Correal, “Openhub: a scalable architecture
for the analysis of software quality attributes,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
420–423.

[9] M. Orrú, E. Tempero, M. Marchesi, R. Tonelli, and G. Destefanis, “A
curated benchmark collection of python systems for empirical studies on
software engineering,” in Proceedings of the 11th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering.
ACM, 2015, p. 2.

[10] R. Dyer, H. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: Ultra-large-
scale software repository and source-code mining,” ACM Trans. Softw.
Eng. Methodol., vol. 25, no. 1, pp. 7:1–7:34, 2015.

[11] Apache Software Foundation, “Hadoop.” [Online]. Available: https:
//hadoop.apache.org

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters 6th symposium on operating system design and
implementation,” San Francisco, 2004.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[14] H. Rajan, T. N. Nguyen, R. Dyer, and H. A. Nguyen, “Boa website,”
http://boa.cs.iastate.edu/, 2015.

[15] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[16] S. Biswas, M. J. Islam, Y. Huang, and H. Rajan, “MSR Data-Showcase
Submission,” http://design.cs.iastate.edu/papers/MSR-19/, 2019.

[17] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online Q&A forum reliable?: a study of API misuse
on stack overflow,” in Proceedings of the 40th International Conference
on Software Engineering. ACM, 2018, pp. 886–896.

[18] T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL (k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp. 789–

810, 1995.

581

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 06,2023 at 03:17:10 UTC from IEEE Xplore. Restrictions apply.

