Autism Spectrum Disorder (ASD) refers to a spectrum of conditions characterised mainly by impairments in social interaction, speech and nonverbal communication, and restricted—repetitive behaviour. The lack of physical testing, done primarily via behaviour analysis, makes ASD diagnosis more difficult. The emergence of Computational Intelligence techniques has resulted in the development of a variety of fast and early ASD diagnosis methods based on multiple input modalities. The premise of computational intelligence (CI) and its efficiency in detecting and monitoring ASD has been examined in this chapter, which has recently advanced. Two types of studies have been discussed in this article. Several aspects of ASD screening, including questionnaires, eye scan paths, movement tracking, behavioural analysis from video, brain scans, and more, have been discussed using machine learning and deep learning. Secondly, ASD detection and monitoring applications have been studied extensively in the past year, with significant advances. Finally, a discussion has been made on the challenges faced in ASD detection and management with future research scopes.